B. Sc Part I, Chemistry, Paper I (Inorganic Chemistry), Unit III, Chemical Bonding II

Syllabus:
Valence Shell Electron Pair Repulsion Theory (VSEPR),
Shapes of the following simple molecules and ions containing
lone pairs and bond pairs of electrons:
$\mathrm{H}_{2} \mathrm{O}, \mathrm{NH}_{3}, \mathrm{PCl}_{3}, \mathrm{PCl}_{5}, \mathrm{SF}_{6}, \mathrm{H}_{3} \mathrm{O}^{+}, \mathrm{SF}_{4}, \mathrm{ClF}_{3}$ and $\mathrm{ICl}_{2}{ }^{-}$

> Presented by :
> Dr. Sumit Srivastava
> Govt. Swami Atmanand PG College
> Narayanpur (C. G.)

Important Points

- VSEPR theory was given by Sidgwick and Powell in 1940 and further extended by Gillespie and Nyholm in 1957
- VSEPR theory describe the shapes of the simple covalent compounds
- Shapes of a molecule depends upon the bond pair (bp) and lone pair (lp) of the central atom of the molecule
- Repulsion between Ip-Ip, Ip-bp and bp-bp of a molecule give the final geometry
- Minimize the energy and maximize the stability
- Order of repulsion : $\mathrm{lp}-\mathrm{lp}>\mid \mathrm{lp}-\mathrm{bp}>\mathrm{bp}-\mathrm{bp}$
- VSEPR Theory is not applicable to ionic and coordination compounds

Geometries (Shapes) of Assorted Molecules

Types of Molecule	bp	Ip	bp + lp	Hybridisation	Structure	Bond Angle (${ }^{\circ}$)	Example
AB_{2}	2	0	2	sp	Linear	180	BeF_{2}
AB_{3}	3	0	3	sp ${ }^{2}$	Trigonal Planer	120	BCl_{3}
$\mathrm{AB}_{2} \mathrm{~L}$	2	1	3	$\mathbf{s p}^{2}$	V-shaped	-	$\mathrm{SnCl}_{2}, \mathrm{PbCl}_{2}$
AB_{4}	4	0	4	sp ${ }^{3}$	Tetrahedral	109.5	CH_{4}
$\mathrm{AB}_{3} \mathrm{~L}$	3	1	4	sp ${ }^{3}$	Trigonal Pyramidal	-	$\mathrm{NH}_{3}, \mathrm{PCl}_{3}$
$A B_{2} L_{2}$	2	2	4	sp ${ }^{3}$	V-shaped	-	$\mathrm{H}_{2} \mathrm{O}, \mathrm{SeCl}_{2}$
AB_{5}	5	0	5	$s p^{3} \mathrm{~d}$	Trigonal bipyramidal	90 and 120	PCl_{5}
$\mathrm{AB}_{4} \mathrm{~L}$	4	1	5	$s p^{3} \mathrm{~d}$	Irregular tetrahedral	-	$\mathrm{SF}_{4}, \mathrm{TeBr}_{4}$
$\mathrm{AB}_{3} \mathrm{~L}_{2}$	3	2	5	$s p^{3} \mathrm{~d}$	T-shaped	-	ClF_{3}
$A B 2^{2} L_{3}$	2	3	5	$s p^{3} \mathrm{~d}$	Linear	-	$\mathrm{ICl}_{2}{ }^{-} \mathrm{XeF}_{2}$
AB_{6}	6	0	6	$s p^{3} \mathrm{~d}^{2}$	Octahedral	90	SF_{6}
$A B_{5} \mathrm{~L}$	5	1	6	$s p^{3} \mathrm{~d}^{2}$	Square pyramidal	-	ClF_{5}
$\mathrm{AB}_{4} \mathrm{~L}_{2}$	4	2	6	$s p^{3} \mathrm{~d}^{2}$	Square planar	-	XeF_{4}
AB_{7}	7	0	7	$\mathrm{sp}^{3} \mathrm{~d}^{3}$	Pentagonal bipyramidal	72 and 90	IF_{7}

$\mathrm{H}_{2} \mathrm{O}$ Molecule	NH_{3} Molecule	PCl 3 Molecule
$\mathrm{bp}=2$	bp $=3$	$\mathrm{bp}=3$
$\mathrm{lp}=2$	$\mathrm{lp}=1$	$\mathrm{lp}=1$
$\mathrm{bp}+\mathrm{lp}=4$ (Hybridisation SP^{3})	bp + lp $=4\left(\right.$ Hybridisation $\left.\mathrm{SP}^{3}\right)$	$\mathrm{bp}+\mathrm{lp}=4\left(\right.$ Hybridisation $\left.\mathrm{SP}^{3}\right)$
V-Shaped Structure	Pyramidal Structure	Pyramidal Structure
Bond angle $=104.5^{\circ}$	Bond angle $=107^{\circ}$	Bond angle $=103^{\circ}$
PCl ${ }_{5}$ Molecule	SF ${ }_{6}$ Molecule	$\mathrm{H}_{3} \mathrm{O}^{+}$Molecule
$\mathrm{bp}=5$	$\mathrm{bp}=6$	$\mathrm{bp}=3$
$\mathrm{lp}=0$	$\mathrm{lp}=0$	$\mathrm{lp}=1$
$\mathrm{bp}+\mathrm{lp}=5$ (Hybridisation $\mathrm{SP}^{3} \mathrm{~d}$)	$\mathrm{bp}+\mathrm{lp}=6$ (Hybridisation $\mathrm{SP}^{3} \mathrm{~d}^{2}$)	$\mathrm{bp}+\mathrm{lp}=4($ Hybridisation SP3$)$
Trigonal bipyramidal Structure	Octahedral Structure	Pyramidal Structure
Bond angle $=90^{\circ}, 120^{\circ}$	Bond angle $=90^{\circ}$	Bond angle $=107^{\circ}$
SF ${ }_{4}$ Molecule	ClF_{3} Molecule	$\mathrm{ICl}_{2}{ }^{-}$Molecule
$\mathrm{bp}=4$	$b p=3$	bp $=2$
$\mathrm{lp}=1$	$\mathrm{lp}=2$	$\mathrm{lp}=3$
$\mathrm{bp}+\mathrm{lp}=5$ (Hybridisation $\left.\mathrm{SP}^{3} \mathrm{~d}\right)$	$\mathrm{bp}+\mathrm{lp}=5$ (Hybridisation $\left.\mathrm{SP}^{3} \mathrm{~d}\right)$	$\mathrm{bp}+\mathrm{lp}=5$ (Hybridisation $\mathrm{SP}^{3} \mathrm{~d}$)
Sea-Saw shaped Structure	T- shaped Structure	Linear Structure
Bond angle $=89^{\circ}, 118^{\circ}, 177^{\circ}$	Bond angle $=87.6^{\circ}$	Bond angle $=180^{\circ}$

Reference Books

1. Madan, R. L., Chemistry for Degree students, B.Sc. First Year, S. Chand Publishing
2. Lee, J. D., Concise Inorganic Chemistry, Wiley
3. Puri, B. R., Sharma, L. R. and Kalia, K. C., Principles of Inorganic Chemistry, Vishal Publishing Co.
4. Huheey, J. E., Keiter, E. A., Keiter, R. L. and Medhi, O. K., Inorganic Chemistry, Principles of structure and Reactivity, Fourth Edition, Pearson Education

Thankyou

